

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR
 (AUTONOMOUS)
B.Tech. II Year II Semester Supplementary Examinations December-2025
MACHINE LEARNING
 (Common to CSM, CAD & CAI)

Time: 3 Hours**Max. Marks: 70****PART-A**(Answer all the Questions $10 \times 2 = 20$ Marks)

1	a What is meant by regression problem. b Define Machine Learning. c List out the performance measures of Regression. d How does KNN regression differ from KNN classification? e What is the main criterion used to split nodes in a decision tree during classification? f Interpret the prior probability in the context of Baye's Rule. g Outline the role of the activation function in a Multi-Layer Perceptron. h Compare Linear Regression and Logistic Regression. i What is a centroid in K-Means clustering? j How does Fuzzy C-Means differ from K-Means?	CO1 L2 2M CO1 L1 2M CO2 L1 2M CO2 L1 2M CO3 L1 2M CO3 L2 2M CO4 L2 2M CO4 L2 2M CO5 L1 2M CO5 L1 2M
---	---	--

PART-B(Answer all Five Units $5 \times 10 = 50$ Marks)**UNIT-I**

2	a Infer the different stages in Machine Learning. b Explain concepts of learning by Rote & Induction with an example.	CO1 L2 5M CO1 L2 5M
---	--	--

OR

3	Illustrate different Data collection Methods with example.	CO1 L2 10M
---	--	---------------------------------

UNIT-II

4	a Outline the steps involved in Nearest Neighbour Models. b Explain hamming distance for any two binary and DNA patterns.	CO2 L2 5M CO2 L2 5M
---	--	--

OR

5	Summarize Euclidian distance measure with one example.	CO2 L2 10M
---	--	---------------------------------

UNIT-III

6	Identify the steps involved in building a Bayes Classifier for binary classification using Bayes' Rule.	CO3 L3 10M
---	---	---------------------------------

OR

7	Utilize Gini Index and Entropy to measure impurity in decision trees.	CO3 L3 10M
---	---	---------------------------------

UNIT-IV

8	a What is Linear Discriminant Analysis (LDA) Explain LDA steps for classification. b Compare and contrast Logistic Regression and Linear Regression.	CO5 L2 6M CO5 L2 4M
---	---	--

OR

9	Describe Multi-Layer Perceptron (MLP) architecture and how it extends the single-layer perceptron.	CO5 L2 10M
---	--	---------------------------------

UNIT-V

10	Compare and Contrast of Rough Clustering and Rough K-Means algorithm with traditional K-Means algorithm.	CO6 L4 10M
----	--	---------------------------------

OR

11	Analyze the differences between Agglomerative and Divisive hierarchical clustering methods.	CO6 L4 10M
----	---	---------------------------------

***** END *****

